Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Braz. j. biol ; 83: 1-7, 2023. ilus, tab
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1468918

RESUMEN

Application of different fertilizers to check the efficiency of expression of Bt (Bacillus thuringiensis) gene in one of the leading commercialized crops (cotton) against Lepidopteran species is of great concern. The expression of Cry protein level can be controlled by the improvement of nutrients levels. Therefore, the myth of response of Cry toxin to different combinations of NP fertilizers was explored in three Bt cotton cultivars. Combinations include three levels of nitrogen and three levels of phosphorus fertilizers. Immunostrips and Cry gene(s) specific primer based PCR (Polymerase Chain Reaction) analysis were used for the presence of Bt gene that unveiled the presence of Cry1Ac gene only. Further, the ELISA (enzyme-linked immunosorbent assay) kit was used to quantify the expression of Cry1Ac protein. Under various NP fertilizers rates, the level of toxin protein exhibited highly significant differences. The highest toxin level mean was found to be 2.3740 and 2.1732 µg/g under the treatment of N150P75 kg ha-¹ combination while the lowest toxin level mean was found to be 0.9158 and 0.7641 µg/g at the N50P25 kg ha-¹ level at 80 and 120 DAS (Days After Sowing), respectively. It was concluded from the research that the usage of NP fertilizers has a positive relation with the expression of Cry1Ac toxin in Bt cotton. We recommend using the N150P50 kg ha-1 level as the most economical and practicable fertilizer instead of the standard dose N100P50 kg ha-¹ to get the desired level of Cry1Ac level for long lasting plant resistance (<1.5). The revised dose of fertilizer may help farmers to avoid the cross-resistance development in contradiction of insect pests.


A aplicação de diferentes fertilizantes para verificar a eficiência da expressão do gene Bt (Bacillus thuringiensis) em uma das principais culturas comercializadas (algodão) contra espécies de lepidópteros é uma grande preocupação. A expressão do nível de proteína Cry pode ser controlada pela melhoria dos níveis de nutrientes. Portanto, o mito da resposta da toxina Cry a diferentes combinações de fertilizantes NP foi explorado em três cultivares de algodão Bt. As combinações incluem três níveis de nitrogênio e três níveis de fertilizantes de fósforo. A análise de PCR (reação em cadeia da polimerase) específica para o gene (s) Immunostrips e Cry (s) foi usada para a presença do gene Bt que revelou a presença do gene Cry1Ac apenas. Além disso, o kit ELISA (ensaio de imunoabsorção enzimática) foi usado para quantificar a expressão da proteína Cry1Ac. Sob várias taxas de fertilizantes NP, o nível de proteína de toxina exibiu diferenças altamente significativas. A média do nível mais alto de toxina foi de 2,3740 e 2,1732 µg / g sob o tratamento da combinação N150P75 kg ha-¹, enquanto a média do nível mais baixo de toxina foi de 0,9158 e 0,7641 µg / g no nível de N50P25 kg ha-¹ em 80 e 120 DAS (dias após a semeadura), respectivamente. Concluiu-se com a pesquisa que o uso de fertilizantes NP tem relação positiva com a expressão da toxina Cry1Ac no algodão Bt. Recomendamos o uso do nível de N150P50 kg ha-¹ como o fertilizante mais econômico e praticável em vez da dose padrão N100P50 kg ha-¹ para obter o nível desejado de nível de Cry1Ac para resistência de planta de longa duração (<1,5). A dose revisada de fertilizante pode ajudar os agricultores a evitar o desenvolvimento de resistência cruzada em contradição com as pragas de insetos.


Asunto(s)
Bacillus thuringiensis/genética , Control de Plagas/métodos , Fertilizantes/análisis , Fósforo/administración & dosificación , Gossypium , Gossypium/genética , Nitrógeno/administración & dosificación , Ensayo de Inmunoadsorción Enzimática , Reacción en Cadena de la Polimerasa
2.
Ciênc. rural (Online) ; 52(2): e20201054, 2022. tab, graf
Artículo en Inglés | VETINDEX, LILACS | ID: biblio-1286057

RESUMEN

Understanding the genetic diversity and overcoming genotype-by-environment interaction issues is an essential step in breeding programs that aims to improve the performance of desirable traits. This study estimated genetic diversity and applied genotype + genotype-by-environment (GGE) biplot analyses in cotton genotypes. Twelve genotypes were evaluated for fiber yield, fiber length, fiber strength, and micronaire. Estimation of variance components and genetic parameters was made through restricted maximum likelihood and the prediction of genotypic values was made through best linear unbiased prediction. The modified Tocher and principal component analysis (PCA) methods, were used to quantify genetic diversity among genotypes. GGE biplot was performed to find the best genotypes regarding adaptability and stability. The Tocher technique and PCA allowed for the formation of clusters of similar genotypes based on a multivariate framework. The GGE biplot indicated that the genotypes IMACV 690 and IMA08 WS were highly adaptable and stable for the main traits in cotton. The cross between the genotype IMACV 690 and IMA08 WS is the most recommended to increase the performance of the main traits in cotton crops.


Compreender a diversidade genética e contornar os problemas causados pela interação genótipos por ambientes é uma etapa importante em programas de melhoramento. Este estudo teve como objetivo estimar a diversidade genética e aplicar a metodologia de biplot genótipo + genótipo por ambiente (GGE biplot) em doze genótipos de algodão avaliados quanto ao rendimento da fibra, comprimento da fibra, resistência da fibra e micronaire. A estimativa dos componentes de variância e dos parâmetros genéticos foi feita através do método da máxima verossimilhança restrita e a predição dos valores genotípicos por meio da melhor predição linear não enviesada. Os métodos de Tocher modificado e análise de componentes principais (PCA) foram utilizados para quantificar a diversidade genética entre os genótipos. O método GGE biplot foi conduzido para encontrar os melhores genótipos em relação à adaptabilidade e estabilidade. As técnicas de Tocher e PCA permitiram a formação de clusters de genótipos semelhantes com base em uma estrutura multivariada. O GGE biplot indicou que os genótipos IMACV 690 e IMA08 WS foram altamente adaptáveis e estáveis para as principais características do algodão. O cruzamento dentre os genótipos IMACV 690 e IMA08 WS é o mais recomendado para aumentar o desempenho das principais características na cultura do algodão.


Asunto(s)
Gossypium/genética , Fibra de Algodón/análisis , Interacción Gen-Ambiente , Genotipo , Fitomejoramiento/métodos
3.
Biol. Res ; 55: 4-4, 2022. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1383909

RESUMEN

BACKGROUND: The internal NAD(P)H dehydrogenase (NDA) gene family was a member of the NAD(P)H dehydrogenase (ND) gene family, mainly involved in the non-phosphorylated respiratory pathways in mitochondria and played crucial roles in response to abiotic stress. METHODS: The whole genome identification, structure analysis and expression pattern of NDA gene family were conducted to analyze the NDA gene family. RESULTS: There were 51, 52, 26, and 24 NDA genes identified in G. hirsutum, G. barbadense, G. arboreum and G. raimondii, respectively. According to the structural characteristics of genes and traits of phylogenetic tree, we divided the NDA gene family into 8 clades. Gene structure analysis showed that the NDA gene family was relatively conservative. The four Gossypium species had good collinearity, and segmental duplication played an important role in the evolution of the NDA gene family. Analysis of cis-elements showed that most GhNDA genes contained cis-elements related to light response and plant hormones (ABA, MeJA and GA). The analysis of the expression patterns of GhNDA genes under different alkaline stress showed that GhNDA genes were actively involved in the response to alkaline stress, possibly through different molecular mechanisms. By analyzing the existing RNA-Seq data after alkaline stress, it was found that an NDA family gene GhNDA32 was expressed, and then theGhNDA32 was silenced by virus-induced gene silencing (VIGS). By observing the phenotype, we found that the wilting degree of silenced plants was much higher than that of the control plant after alkaline treatment, suggesting that GhNDA32 gene was involved in the response to alkaline stress. CONCLUSIONS: In this study, GhNDAs participated in response to alkaline stress, especially NaHCO3 stress. It was of great significance for the future research on the molecular mechanism of NDA gene family in responding to abiotic stresses.


Asunto(s)
Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Estructura Molecular , Familia de Multigenes/genética , Genoma de Planta
4.
Biol. Res ; 55: 27-27, 2022. ilus, tab, graf
Artículo en Inglés | LILACS | ID: biblio-1447503

RESUMEN

BACKGROUND: Cytokinin signal transduction is mediated by a two-component system (TCS). Two-component systems are utilized in plant responses to hormones as well as to biotic and abiotic environmental stimuli. In plants, response regulatory genes (RRs) are one of the main members of the two-component system (TCS). METHOD: From the aspects of gene structure, evolution mode, expression type, regulatory network and gene function, the evolution process and role of RR genes in the evolution of the cotton genome were analyzed. RESULT: A total of 284 RR genes in four cotton species were identified. Including 1049 orthologous/paralogous gene pairs were identified, most of which were whole genome duplication (WGD). The RR genes promoter elements contain phytohormone responses and abiotic or biotic stress-related cis-elements. Expression analysis showed that RR genes family may be negatively regulate and involved in salt stress and drought stress in plants. Protein regulatory network analysis showed that RR family proteins are involved in regulating the DNA-binding transcription factor activity (COG5641) pathway and HP kinase pathways. VIGS analysis showed that the GhRR7 gene may be in the same regulatory pathway as GhAHP5 and GhPHYB, ultimately negatively regulating cotton drought stress by regulating POD, SOD, CAT, H2O2 and other reactive oxygen removal systems. CONCLUSION: This study is the first to gain insight into RR gene members in cotton. Our research lays the foundation for discovering the genes related to drought and salt tolerance and creating new cotton germplasm materials for drought and salt tolerance.


Asunto(s)
Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Filogenia , Estrés Fisiológico/genética , Genes Reguladores , Gossypium/genética , Sequías , Peróxido de Hidrógeno/metabolismo
5.
Braz. j. biol ; 81(2): 251-257, 2021. tab, graf
Artículo en Inglés | LILACS, VETINDEX | ID: biblio-1153347

RESUMEN

Genetically modified plants are one of the tactics used in integrated pest management - IPM. There is great concern about the impact of these plants on non-target organisms. On the other hand, there is little information in the literature on the effects of transgenics (Bacillus thuringiensis) Bt on populations of phytophagous mites, and the physiological responses that this attack promotes on plants. The objective of this work was to evaluate the biology of the T. ludeni mite in Bt cotton, expressing the Cry1F and Cry1Ac proteins. To evaluate the behavior of food and oviposition preference of the T. ludeni with Bt cotton and isohybrid. Verify if the physiological stress caused by T. ludeni's attack is differentiated in Bt cotton. The mites were reared in Bt cotton and isohybrid, in a total of 40 replicates in the completely randomized design and the biological cycle was evaluated. The food preference and oviposition analysis were done with 10 replicates, with choice. The physiological stress was evaluated through chlorophyll fluorescence, under greenhouse conditions. The data of the T. ludeni biology were analyzed by Student's t-test, for food and oviposition preference the chi-square test was performed. Regression models were fitted for the fluorescence parameters. The model identity test was used to evaluate the differences between Bt and isohybrid treatments. Cry1F and Cry1Ac proteins have not affected the biology of T. ludeni. The photosynthetic parameters in Bt cotton plants were less influenced by T. ludeni infestation.


O uso de plantas geneticamente modificadas é uma das táticas utilizadas no manejo integrado de pragas - MIP. Observa-se grande preocupação com o impacto dessas plantas sobre organismos não alvos. Por outro lado, existe pouca informação na literatura sobre efeitos dos transgênicos (Bacillus thuringiensis) Bt em populações de ácaros fitófagos, e as respostas fisiológicas que esse ataque promove nas plantas. Objetivou-se com esse trabalho avaliar a biologia do ácaro T. ludeni em algodoeiro Bt, expressando as proteínas Cry1F e Cry1Ac. Avaliar se há comportamento de preferência alimentar e postura de T. ludeni em relação ao algodoeiro Bt e seu iso-híbrido. E verificar se o estresse fisiológico causado pelo ataque de T. ludeni é diferenciado em algodoeiro Bt. Os ácaros foram criados em algodoeiro Bt e iso-híbrido, em um total de 40 repetições no delineamento inteiramente casualizado, onde foi avaliado o ciclo biológico. A análise de preferência alimentar e de posturas foi feita com 10 repetições, com escolha. O estresse fisiológico foi avaliando através da fluorescência da clorofila, em casa de vegetação. Os dados da biologia de T. ludeni foram analisados pelo teste t Student, para preferência alimentar e postura foi realizado o teste qui-quadrado. Para os parâmetros da fluorescência, foram ajustados modelos de regressão. Para testar as diferenças entre Bt e iso-híbrido foi utilizado o teste de identidade de modelos. As proteínas Cry1F e Cry1Ac não afetaram a biologia de T. ludeni. Os parâmetros fotossintéticos em plantas de algodoeiro Bt foram menos influenciados pela infestação de T. ludeni.


Asunto(s)
Animales , Femenino , Plantas Modificadas Genéticamente/genética , Tetranychidae/genética , Estrés Fisiológico , Proteínas Bacterianas/genética , Gossypium/genética , Endotoxinas , Toxinas de Bacillus thuringiensis , Proteínas Hemolisinas/genética , Larva
6.
Biol. Res ; 54: 36-36, 2021. ilus, graf
Artículo en Inglés | LILACS | ID: biblio-1505821

RESUMEN

BACKGROUND: Melatonin 2-hydroxylase (M2H) is the first enzyme in the catabolism pathway of melatonin, which catalyzes the production of 2-hydroxymelatonin (2-OHM) from melatonin. The content of 2-hydroxymelatonin in plants is much higher than that of melatonin. So M2H may be a key enzyme in the metabolic pathway of melatonin. METHOD: We conducted a systematic analysis of the M2H gene family in Gossypium hirsutum based on the whole genome sequence by integrating the structural characteristics, phylogenetic relationships, expression profile, and biological stress of the members of the Gossypium hirsutum M2H gene family. RESULT: We identified 265 M2H genes in the whole genome of Gossypium hirsutum, which were divided into 7 clades (clades I-VII) according to phylogenetic analysis. Most M2H members in each group had similar motif composition and gene structure characteristics. More than half of GhM2H members contain ABA-responsive elements and MeJA-responsive elements. Under different stress conditions, the expression levels of the gene changed, indicating that GhM2H members were involved in the regulation of abiotic stress. Some genes in the GhM2H family were involved in regulating melatonin levels in cotton under salt stress, and some genes were regulated by exogenous melatonin. CONCLUSION: This study is helpful to explore the function of GhM2H, the downstream metabolism gene of melatonin in cotton, and lay the foundation for better exploring the molecular mechanism of melatonin improving cotton's response to abiotic stress.


Asunto(s)
Gossypium/genética , Melatonina , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Familia de Multigenes , Regulación de la Expresión Génica de las Plantas
7.
Chinese Journal of Biotechnology ; (12): 2051-2065, 2020.
Artículo en Chino | WPRIM | ID: wpr-878465

RESUMEN

Plant trichomes are special structures that originate from epidermal outgrowths. Trichomes play an important role in plant defense against pests and diseases, and possess economic and medicinal values. Study on molecular mechanism of plant trichomes will contribute to the molecular design breeding and genetic improvement of crops. In recent years, the regulation mechanism of trichome development has been basically clarified in the model plant Arabidopsis thaliana, while great progresses are also found in other plant species. In this review, we focus on the developmental regulation of trichome formation from gene and phytohormones levels in Arabidopsis and cotton (with unicellular trichomes), as well as in tomato and Artemisia annua (with multicellular trichomes). The research progress associated with trichomes is also introduced in other typical monocotyledons and dicotyledons. Finally, the research and application of plant trichomes are prospected.


Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Gossypium/genética , Solanum lycopersicum , Reguladores del Crecimiento de las Plantas/metabolismo , Tricomas/genética
8.
Braz. arch. biol. technol ; 63: e20180428, 2020. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1132198

RESUMEN

Abstract Development of transgenic Bt crops with stable and high level of Bt protein expression over generations under different environmental conditions is critical for successful deployment at field level. In the present study, progenies of transgenic cotton Coker310 event, CH12 expressing novel cry2AX1 gene were evaluated in T3 generation for stable integration, expression and resistance against cotton bollworm, Helicoverpa armigera. The cry2AX1 gene showed stable inheritance and integration in the T3 progeny plants as revealed by PCR and Southern blot hybridization. The expression of Cry2AX1 protein on 90 days after sowing (DAS) was in the range of 1.055 to 1.5 µg/g of fresh leaf tissue except one plant which showed 0.806 µg/g of fresh leaf tissue and after 30 days (i.e., on 120 DAS) three plants recorded in between 0.69 to 0.82 µg/g and other plants are in range of 0.918 to 1.058 µg/g of fresh leaf tissue. Detached leaf bit bioassay in T3 progeny on 110 DAS recorded mortality of 73.33 to 93.33 per cent against H. armigera and severe growth retardation in surviving larvae. These results indicate that the expression of chimeric cry2AX1 is stable and exhibits insecticidal activity against H. armigera in T3 progeny of CH12 event of transgenic cotton.


Asunto(s)
Animales , Bacillus thuringiensis/patogenicidad , Control Biológico de Vectores/métodos , Gossypium/genética , Endotoxinas/genética , Mariposas Nocturnas , Enfermedades de las Plantas/prevención & control , Plantas Tóxicas , Bioensayo , Plantas Modificadas Genéticamente
9.
Biol. Res ; 52: 6, 2019. tab, graf
Artículo en Inglés | LILACS | ID: biblio-1011409

RESUMEN

BACKGROUND: Pollen development is an energy-consuming process that particularly occurs during meiosis. Low levels of adenosine triphosphate (ATP) may cause cell death, resulting in CMS (cytoplasmic male sterility). DNA sequence differences in ATP synthase genes have been revealed between the N- and S-cytoplasms in the cotton CMS system. However, very few data are available at the RNA level. In this study, we compared five ATP synthase genes in the H276A, H276B and fertile F1 (H276A/H268) lines using RNA editing, RNA blotting and quantitative real time-PCR (qRT-PCR) to explore their contribution to CMS. A molecular marker for identifying male sterile cytoplasm (MSC) was also developed. RESULTS: RNA blotting revealed the absence of any novel orf for the ATP synthase gene sequence in the three lines. Forty-one RNA editing sites were identified in the coding sequences. RNA editing showed that proteins had 32.43% higher hydrophobicity and that 39.02% of RNA editing sites had proline converted to leucine. Two new stop codons were detected in atp6 and atp9 by RNA editing. Real-time qRT-PCR data showed that the atp1, atp6, atp8, and atp9 genes had substantially lower expression levels in H276A compared with those in H276B. By contrast, the expression levels of all five genes were increased in F1 (H276A/H268). Moreover, a molecular marker based on a 6-bp deletion upstream of atp8 in H276A was developed to identify male sterile cytoplasm (MSC) in cotton. CONCLUSIONS: Our data substantially contributes to the understanding of the function of ATP synthase genes in cotton CMS. Therefore, we suggest that ATP synthase genes might be an indirect cause of cotton CMS. Further research is needed to investigate the relationship among ATP synthase genes in cotton CMS.


Asunto(s)
Membrana Celular/genética , Edición de ARN , Adenosina Trifosfatasas/genética , Gossypium/enzimología , Infertilidad Vegetal/genética , ADN Mitocondrial/genética , Reacción en Cadena de la Polimerasa , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Citoplasma/metabolismo , ARN Mitocondrial/genética
10.
Biol. Res ; 51: 47, 2018. tab, graf
Artículo en Inglés | LILACS | ID: biblio-983951

RESUMEN

Increased levels of greenhouse gases in the atmosphere and associated climatic variability is primarily responsible for inducing heat waves, flooding and drought stress. Among these, water scarcity is a major limitation to crop productivity. Water stress can severely reduce crop yield and both the severity and duration of the stress are critical. Water availability is a key driver for sustainable cotton production and its limitations can adversely affect physiological and biochemical processes of plants, leading towards lint yield reduction. Adaptation of crop husbandry techniques suitable for cotton crop requires a sound understanding of environmental factors, influencing cotton lint yield and fiber quality. Various defense mechanisms e.g. maintenance of membrane stability, carbon fixation rate, hormone regulation, generation of antioxidants and induction of stress proteins have been found play a vital role in plant survival under moisture stress. Plant molecular breeding plays a functional role to ascertain superior genes for important traits and can offer breeder ready markers for developing ideotypes. This review highlights drought-induced damage to cotton plants at structural, physiological and molecular levels. It also discusses the opportunities for increasing drought tolerance in cotton either through modern gene editing technology like clustered regularly interspaced short palindromic repeat (CRISPR/Cas9), zinc finger nuclease, molecular breeding as well as through crop management, such as use of appropriate fertilization, growth regulator application and soil amendments.


Asunto(s)
Estrés Fisiológico/fisiología , Adaptación Fisiológica/fisiología , Plantas Modificadas Genéticamente/fisiología , Regulación de la Expresión Génica de las Plantas/fisiología , Gossypium/fisiología , Sequías , Estrés Fisiológico/genética , Adaptación Fisiológica/genética , Plantas Modificadas Genéticamente/genética , Regulación de la Expresión Génica de las Plantas/genética , Gossypium/genética , Aclimatación/genética
11.
An. acad. bras. ciênc ; 89(4): 2955-2969, Oct.-Dec. 2017. tab, graf
Artículo en Inglés | LILACS | ID: biblio-886855

RESUMEN

ABSTRACT The host acceptance behavior and environmental factors as temperature affect the feeding behavior of Lepidoptera pests. Thus, they must be considered in studies about the risk potential of resistance evolution. The current study sets the differences in the feeding behavior of neonate Alabama argillacea (Hübner) (Lepidoptera: Noctuidae) larvae exposed to Bt and non-Bt cotton plants, under different temperatures and time gap after hatching. Two cotton cultivars were used: the Bt (DP 404 BG - bollgard) and the non-transformed isoline, DP 4049. We found that the feeding behavior of neonate A. argillacea is significantly different between Bt and non-Bt cotton. Based on the number of larvae with vegetal tissue in their gut found on the plant and in the organza as well as on the amount of vegetal tissue ingested by the larvae. A. argillacea shows feeding preference for non-Bt cotton plants, in comparison to that on the Bt. However, factors such as temperature and exposure time may affect detection capacity and plant abandonment by the larvae and it results in lower ingestion of vegetal tissue. Such results are relevant to handle the resistance of Bt cotton cultivars to A. argillacea and they also enable determining how the cotton seeds mix will be a feasible handling option to hold back resistance evolution in A. argillacea populations on Bt cotton, when it is compared to other refuge strategies. The results can also be useful to determine which refuge distribution of plants is more effective for handling Bt cotton resistance to A. argillacea.


Asunto(s)
Animales , Temperatura , Gossypium/parasitología , Conducta Alimentaria/fisiología , Lepidópteros/fisiología , Bioensayo , Control Biológico de Vectores , Plantas Modificadas Genéticamente , Gossypium/genética , Lepidópteros/clasificación
12.
Biol. Res ; 48: 1-11, 2015. ilus, tab
Artículo en Inglés | LILACS | ID: biblio-950778

RESUMEN

BACKGROUND: Insects have developed resistance against Bt-transgenic plants. A multi-barrier defense system to weaken their resistance development is now necessary. One such approach is to use fusion protein genes to increase resistance in plants by introducing more Bt genes in combination. The locating the target protein at the point of insect attack will be more effective. It will not mean that the non-green parts of the plants are free of toxic proteins, but it will inflict more damage on the insects because they are at maximum activity in the green parts of plants. RESULTS: Successful cloning was achieved by the amplification of Cry2A, Cry1Ac, and a transit peptide. The appropriate polymerase chain reaction amplification and digested products confirmed that Cry1Ac and Cry2A were successfully cloned in the correct orientation. The appearance of a blue color in sections of infiltrated leaves after 72 hours confirmed the successful expression of the construct in the plant expression system. The overall transformation efficiency was calculated to be 0.7%. The amplification of Cry1Ac-Cry2A and Tp2 showed the successful integration of target genes into the genome of cotton plants. A maximum of 0.673 µg/g tissue of Cry1Ac and 0.568 µg/g tissue of Cry2A was observed in transgenic plants. We obtained 100% mortality in the target insect after 72 hours of feeding the 2nd instar larvae with transgenic plants. The appearance of a yellow color in transgenic cross sections, while absent in the control, through phase contrast microscopy indicated chloroplast localization of the target protein. CONCLUSION: Locating the target protein at the point of insect attack increases insect mortality when compared with that of other transgenic plants. The results of this study will also be of great value from a biosafety point of view.


Asunto(s)
Animales , Proteínas Bacterianas/genética , Proteínas Recombinantes de Fusión , Cloroplastos/genética , Control de Insectos/métodos , Gossypium/genética , Endotoxinas/genética , Proteínas Hemolisinas/genética , Lepidópteros , Bacillus thuringiensis , Proteínas Bacterianas/análisis , Resistencia a los Insecticidas/genética , Inmunohistoquímica , Expresión Génica/genética , Cloroplastos/metabolismo , Reacción en Cadena de la Polimerasa , Microscopía de Contraste de Fase , Plantas Modificadas Genéticamente , Clonación Molecular , Cartilla de ADN , Hojas de la Planta/genética , Transgenes/fisiología , Endotoxinas/análisis , Fusión Génica , Proteínas Hemolisinas/análisis , Insecticidas , Larva
13.
Artículo en Inglés | IMSEAR | ID: sea-144080

RESUMEN

WRKY transcription factor proteins play important roles in diverse stress responses. In this study, we first cloned a novel WRKY from our constructed bacteriophage full-length cDNA library for cotton (Gossypium barbadense). The plants were stressed by exposure to a defoliating strain of Verticillium dahliae. The capacity of primary cDNA library was 1.28 × 106 PFU and the titer of the amplified cDNA library was >1010 PFU mL–1. The recombination rate of the library was 94% and average insert size was about 1.1 kb. This novel gene, named GbWRKY1 was 1971 bp long and encodes a protein of 489 amino acids. It contains two characteristic WRKY domains and two zinc finger motifs. The sub-cellular assay indicated that GbWRKY1–GFP fusion protein was localized in the nucleus. Furthermore, Northern blot analysis showed that expression pattern of GbWRKY1 was similar among tissue types (roots, stems and leaves), but differed between pathogen-infiltrated and Czapek medium-infiltrated (untreated control) plants. Quantitative real-time PCR showed that GbWRKY1 could also be induced by salicylic acid (SA), methyl jasmonate (MeJA) and 1-aminocyclopropane-1-carboxylic acid (ACC). These findings clearly suggest that as a pathogen-inducible transcription factor GbWRKY1 plays an important role in plant defense responses.


Asunto(s)
ADN/química , Genes/análisis , Gossypium/genética , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Verticillium/aislamiento & purificación , Genes de Plantas , ADN de Plantas/genética
14.
Rev. biol. trop ; 60(2): 611-623, June 2012. graf, tab
Artículo en Español | LILACS | ID: lil-657806

RESUMEN

Arachnofauna (Araneae: Araneae) in transgenic and conventional cotton crops (Gossypiumhirsutum) in the North of Santa Fe, Argentina. Spiders have considerable potential importance for their role as predators to some pests in agricultural systems. The composition of spiders in transgenic and conventional cotton at the Research Station of INTA Reconquista (Santa Fe) was studied during the 2005-2006 season. The experiment was a complete randomized block design with three replications and three treatments: transgenic Bt cotton (ALBt), conventional cotton without chemical control (ALCSC), and conventional cotton with chemical control (ALCCC). Weekly, spiders were collected using nets, vertical cloth and pitfall-traps. A total of 1 255 specimens (16 families, and 32 species) were collected. Seven families were found in all the treatments, mainly Thomisidae (n=1 051, 84.04%) and Araneidae (n=83, 6.64%). The Hunting spiders guild ambushers (n=1 053, 83.91%), “Orb weavers” (n=85, 6.77%) and “Stalkers” (n=53, 4.22%) were more abundant. There were no significant differences in the indexes diversity between treatments. Spiders were presented during the whole crop season, with peaks about flowering and boll maturity, with the highest abundance in ALBt. This work is part of the first set of data registered in Argentina about spider’s community in cotton crops. Rev. Biol. Trop. 60 (2): 611-623. Epub 2012 June 01.


Las arañas tienen un valor potencial considerable por su rol depredador de insectos, estas son plagas de la agricultura. Durante la campaña agrícola 2005/06, en INTA Reconquista, Santa Fe (Argentina) se estudio la composición de arañas presentes en cultivos de algodón transgénico y convencional, mediante un diseño experimental de bloques completos al azar, con tres repeticiones y tres tratamientos: algodón transgénico Bt (ALBt), algodón convencional sin control químico (ALCSC) y con control químico (ALCCC). Semanalmente, se capturaron arañas, con una red entomológica de arrastre, paño vertical de 1m y trampas de caída. Asimismo se recolectaron 1 255 ejemplares (16 familias y 32 especies). Siete familias se presentaron en los tres tratamientos, donde predomino Thomisidae (n=1 051, 84.04%) y Araneidae (n=83, 6.64%). El gremio cazadoras por emboscada (n=1 053, 83.91%), “Tejedoras de telas orbiculares” (n=85, 6.77%) y “Cazadoras al acecho” (n=53, 4.22%) fueron las más abundantes. No hubo diferencias significativas en los índices de diversidad entre tratamientos. Las arañas se presentaron durante todo el ciclo del cultivo, con picos en las semanas de floración y madurez de las capsulas, además la mayor abundancia la encontramos en el ALBt. Este trabajo constituye el primer registro sobre la comunidad de arañas en cultivos de algodón para Argentina.


Asunto(s)
Animales , Biodiversidad , Gossypium/parasitología , Plantas Modificadas Genéticamente/parasitología , Arañas/clasificación , Agricultura , Argentina , Gossypium/genética , Densidad de Población , Distribución Aleatoria
15.
Indian J Biochem Biophys ; 2012 Jun; 49(3): 195-201
Artículo en Inglés | IMSEAR | ID: sea-140236

RESUMEN

The impact of five Bacillus thuringiensis (Bt) cotton varieties and their respective isogenic non-Bt(NBt) isolines (ANKUR-2534, MECH-6304, RCH-317, ANKUR-651 and MECH-6301) was assessed on the key soil enzymes i.e., dehydrogenase, alkaline phosphatase and urease in their rhizosphere at four growth stages of the crop, namely vegetative, flowering, bolling and harvesting. These varieties were grown on farmer’s field in villages 22 miles and 24 miles of Ganganagar District of Rajasthan State in India. Results showed that dehydrogenase, alkaline phosphatase and urease activities were higher in rhizosphere of Bt isolines as compared to NBt isolines of all the varieties. Except phosphatase, differences in dehydrogenase and urease activities in rhizosphere of Bt and NBt isolines of all five varieties were significant (P<0.05). Maximum enhancement in the three enzymes activities was observed in MECH-6304 Bt isoline rhizosphere. Maximum and minimum activities of dehydrogenase and urease were observed in MECH-6304 and RCH-317 Bt isolines, respectively, whereas phosphatase activity was maximum and minimum in MECH-6304 and ANKUR-651 Bt isolines, respectively. Maximum dehydrogenase and urease activities were observed at boll formation and minimum at flowering and harvesting stage, respectively, while maximum phosphatase activity was observed at vegetative stage and minimum at harvesting stage. In conclusion, all the studied Bt isolines of cotton varieties showed no adverse effect on dehydrogenase, alkaline phosphatase and urease activities in the rhizosphere.


Asunto(s)
Fosfatasa Alcalina/química , Fosfatasa Alcalina/metabolismo , Bacillus thuringiensis/enzimología , Bacillus thuringiensis/genética , Gossypium/enzimología , Gossypium/genética , Gossypium/crecimiento & desarrollo , Oxidorreductasas/química , Oxidorreductasas/metabolismo , Plantas Modificadas Genéticamente , Rizosfera , Suelo/análisis , Ureasa/química , Ureasa/metabolismo
16.
Electron. j. biotechnol ; 14(3): 3-3, May 2011. ilus, tab
Artículo en Inglés | LILACS | ID: lil-602980

RESUMEN

Increasing scarcity of irrigation water is a major threat to sustainable production of cotton (Gossypium hirsutum L.). Identifying genomic regions contributing to abiotic stress tolerance will help develop cotton cultivars suitable for water-limited regions through molecular marker-assisted breeding. A molecular mapping F2 population was derived from an intraspecific cross of the drought sensitive G. hirsutum cv. FH-901 and drought tolerant G. hirsutum cv. RH-510. Field data were recorded on physiological traits (osmotic potential and osmotic adjustment); yield and its component traits (seedcotton yield, number of bolls/plant and boll weight); and plant architecture traits (plant height and number of nodes per plant) for F2, F2:3 and F2:4 generations under well-watered versus water-limited growth conditions. The two parents were surveyed for polymorphism using 6500 SSR primer pairs. Joinmap3.0 software was used to construct linkage map with 64 polymorphic markers and it resulted into 35 markers mapped on 12 linkage groups. QTL analysis was performed by composite interval mapping (CIM) using QTL Cartographer2.5 software. In total, 7 QTLs (osmotic potential 2, osmotic adjustment 1, seedcotton yield 1, number of bolls/plant 1, boll weight 1 and plant height 1) were identified. There were three QTLs (qtlOP-2, qtlOA-1, and qtlPH-1) detected only in water-limited conditions. Two QTLs (qtlSC-1 and qtlBW-1) were detected for relative values. Two QTLs (qtlOP-1 and qtlBN-1) were detected for well-watered treatment. Significant QTLs detected in this study can be employed in MAS for molecular breeding programs aiming at developing drought tolerant cotton cultivars.


Asunto(s)
Sequías , Gossypium/fisiología , Gossypium/genética , Sitios de Carácter Cuantitativo , Adaptación Fisiológica , ADN de Plantas/genética , Variación Genética , Gossypium/crecimiento & desarrollo , Mapeo Cromosómico/métodos , Ósmosis , Polimorfismo Genético , Programas Informáticos
17.
Rev. colomb. biotecnol ; 12(2): 151-162, dic. 2010. tab
Artículo en Español | LILACS | ID: lil-590781

RESUMEN

La producción de alimentos se basa en el uso de diferentes tecnologías agrícolas, que pueden derivar en conflictos entre medioambiente y agricultura. Es significativo estudiar el impacto ambiental de las nuevas tecnologías aplicadas a la agricultura, la más importante de las cuales es la transgénesis. Este trabajo se realizó en la zona algodonera del municipio del Espinal, departamento del Tolima, para la cosecha de algodón del primer semestre de 2009, usando las metodologías de Brookes y Barfoot (2006) y Kovach y colaboradores (1992). Se estudió el efecto ambiental de la aplicación de agroquímicos y el uso de maquinaria agrícola en cultivos de algodón transgénico y convencional. Se recogió información mediante encuestas en veinte fincas productoras de algodón. El análisis de las encuestas se realizó de forma descriptiva, determinando diferencias de tipo cuantitativo y cualitativo para los predios que utilizan la tecnología convencional o la tecnología transgénicas (doble gen, Bt/RR), para luego realizar una correlación con el “Enviromental Index Quotient” (EIQ). No se encontraron diferencias entre el EIQ de campo de las dos tecnologías, aunque la tecnología transgénica tiene ventajas ambientales en el control de algunas plagas de lepidópteros. En relación con el uso de maquinaria agrícola, se encontró que la tecnología convencional genera menor liberación de CO2, gas de efecto invernadero. La metodología de Brookes y Barfoot puede adaptarse para estudios comparativos de tecnologías agrícolas en países tropicales.


Food production is based on the use of various agricultural technologies, which can lead to conflicts between environment and agriculture. It is important to study the environmental impact of new technologies applied to agriculture, the most important of which is transgenesis. This work was carried out in the cotton belt of the town of Espinal, Tolima Department for the cotton crop in the first half of 2009, through methodologies Brookes & Barfoot (2006) and Kovach et al (1992). We studied the environmental impact of pesticide application and use of agricultural machinery for cultivation of transgenic and conventional cotton. Information was collected through surveys of 20 farms producing cotton. The analysis of the survey was conducted descriptively, by determining differences in quantitative and qualitative for the sites that use conventional technology, and transgenic (Bt gene and double RR / RR), and then make a correlation with the Environmental Index Quotient (EIQ). No differences were found between the fields EIQ the two technologies, although transgenic technology has environmental advantages in the control of some lepidopteran pests. In connection with the use of agricultural machinery, was found to conventional technology generates less release of CO2, greenhouse gas. The Brookes and Barfoot methodology could be adapted in comparative studies of agricultural technologies in tropical countries.


Asunto(s)
Contaminantes Ambientales/análisis , Contaminantes Ambientales/efectos adversos , Gossypium/crecimiento & desarrollo , Gossypium/efectos adversos , Gossypium/enzimología , Gossypium/fisiología , Gossypium/genética , Gossypium/inmunología , Gossypium/parasitología , Gossypium/toxicidad , Exposición a Riesgos Ambientales/análisis , Exposición a Riesgos Ambientales/efectos adversos , Exposición a Riesgos Ambientales/estadística & datos numéricos , Exposición a Riesgos Ambientales/prevención & control
18.
Electron. j. biotechnol ; 13(5): 3-4, Sept. 2010. ilus, tab
Artículo en Inglés | LILACS | ID: lil-591885

RESUMEN

Exploring genetic variation in Gossypium arboreum L. germplasm is useful as it contains many important genes conferring resistance to different stresses. In limited earlier studies, low level of genetic diversity was found by using conventional DNA marker systems which may impede future genome mapping studies. In the present investigation, we explored the extent of Single Nucleotide Polymorphisms (SNP) among 30 conserved regions of Expressed Sequence Tags (EST) of low copy genes between two genotypes of G. arboreum. A total of 27 SNPs including 21 substitutions and 6 Insertions and deletions (Indels) in 7804 bp were found between these genotypes with a frequency of one SNP per 371 bp and one Indel after every 1300 bp. Out of these SNPs, 52 percent were transitions, whilst 48 percent SNPs were transversion. In conclusion, SNPs are expedient markers that can explore polymorphism in highly conserved sequences where other markers are not effective.


Asunto(s)
Gossypium/genética , Polimorfismo de Nucleótido Simple , Secuencia Conservada , Etiquetas de Secuencia Expresada , Marcadores Genéticos , Polimorfismo Genético
19.
Neotrop. entomol ; 39(3): 338-344, May-June 2010. tab
Artículo en Portugués | LILACS | ID: lil-556517

RESUMEN

The two spotted spider mite, Tetranychus urticae Koch, is a nontarget herbivore of Bt-cotton, but acquires and accumulates higher levels of Cry toxin than that expressed by transgenic plants. This work investigated the development and reproduction of T. urticae and of the predator Phytoseiulus macropilis Banks, during three successive generations looking for potential nontarget effect. In addition, behavioral studies on feeding preference, oviposition, and predation were carried out on Bt and non-Bt cottons. The development and reproduction of T. urticae and P. macropilis was conducted using leaf discs of Bt and non-Bt cottons. Arena containing leaf discs from both cotton types connected by a slide coverslip were also used in the behavioral studies. Averages of the three generations showed that the Bt-cotton does not affect the development, survival of immature stages, and reproductive output of T. urticae and of the predator P. macropilis. Furthermore, the preference for feeding and oviposition of T. urticae and P. macropilis were similar on both cotton types. In addition, P. macropilis exhibited similar predatory behavior on T. urticae fed on both cotton types. Levels of Cry1Ac toxin in T. urticae was 3.97 times greater than that found in the Bt-cotton plants as determined using a ELISA test. Despite of the amount of toxin acquired by the prey (T. urticae), no detectable levels of Cry1Ac were found in the predatory mite P. macropilis.


Asunto(s)
Animales , Ácaros y Garrapatas/fisiología , Gossypium/parasitología , Plantas Modificadas Genéticamente/parasitología , Tetranychidae/fisiología , Conducta Animal , Gossypium/genética
20.
IJB-Iranian Journal of Biotechnology. 2009; 7 (1): 45-50
en Inglés | IMEMR | ID: emr-134995

RESUMEN

Cotton cultivar Coker has been already transformed with recombinant pBI121-chi via Agrobacterium tumefaciens. The T-DNA region of pBI121-chi carries the chitinase [chi] gene from bean and is under the control of the CaMV35S promoter. T1 and T2 progenies of transgenic cotton containing the chi gene were used in this study. Polymerase chain reaction [PCR], Southern and Western blotting data confirmed integration and expression of the chi gene in the T1 and T2 progenies. The growth of Verticillium dahliae was singnificantly inhibited in an in vitro bioassay for which 100 micro g of crude leaf protein extract derived from the T1 plants was used. The 850-bp expected chi fragment was amplified for 77 transgenic plants from 128 T1 and T2 progenies, and 75 transgenic plants showed both chi and nptII bands. T0 conduct bioassay, cotton seedlings were infected with the spore suspension [10[6] spores/ml], in a greenhouse. Fifty-five percent of the transgenic plants were able to restrict V. dahliae growth and symptoms. There were no distinguishable differences in the phenotypic appearance of transgenic plants compared to non-transgenics. These results showed that transgenic cotton expressing a bean chitinase exhibited enhanced resistance against V. dahliae in greenhouse and in-vitro assay as compared to the non-transgenic plants


Asunto(s)
Gossypium/genética , Genes , Plantas Modificadas Genéticamente , Verticillium , Reacción en Cadena de la Polimerasa , Southern Blotting , Western Blotting
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA